

Wire Rope Construction Grade Lube Page Core Low Rise Hoisting Ropes Mid Rise Hoisting Ropes AlpsXTRA8 2F-IF..................8x25 Fi................................Fiber......HS..... 20 High Rise Hoisting Ropes **Governor & Door Ropes** AlpsXTRA8 1S-IF.......Governor Rope......Iron.....Fiber......32

Reeving splices 40

Technical Information 45

Contents

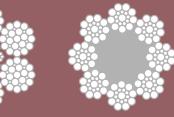
alpswirerope.com

verope ®

Consistent diameter & steady lay length

→ Learn more on page 59

Let Alps wire ropes save you time: No re-adjusting needed.


Alps Elevator ropes are Pre-Stretched, at no additional cost to you.

Low Rise Hoisting Ropes

Wire Rope Construction Grade Core Lube Page

Alps6	1S-EF	6x19	s	EHS	Fiber HS	6
Alps6	2F-TF	6x25	Fi	Traction	Fiber HS	8
Alps6	2F-EF	6x25	Fi	EHS	Fiber HS	8
Alps6	2F-EI	6x25	Fi	EHS	IWRCHS1	0
AlpsX ⁻	TRA8 1S-TF	8x19	s	Traction	Fiber HS 1	2


Alps6 2F-EF

AlpsXTRA8 1S-TF

Mid Rise Hoisting Ropes

AlpsXTRA8	1S-EF	8x19	S	EHS	EFFE
AlpsXTRA8	1S-TI	8x19	S	Trac	
AlpsXTRA8	1S-D13I	8x19	S	1370)	હિ
AlpsXTRA8	1S-EI	8x19	S	EHS	000 C
AlpsXTRA8	2F-IF	8x25	Fi	Iron	Porteni
					31111

High	Rise	Hois	ting	Ropes

AlpsXTRA8 1W-D15I	8x19 W	1570/1770	IWRCX	S 24
AlpsXTRA8 2F-D15I	8x25 Fi	1570/1770	IWRCX	S 26

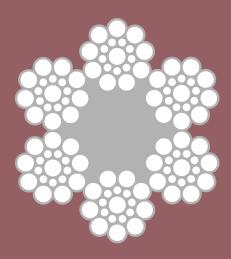
Governor & Door Ropes

Almos 10 IF	Cavarnar Dana Iran	Fibor 20
Alps6 1S-IFAlpsXTRA8 1S-IF		
AlpsDR		
Additional Products		37
Elevator wire rope wedge sockets .		
Reeving splices		40
Lubricant		41
Technical Information		45

Alps6 1S-EF

Alps6 2F-TF

Alps6 2F-EF


Consistent diameter & steady lay length

→ Learn more on page 59

Let Alps wire ropes save you time: No re-adjusting needed.

Alps Elevator ropes are Pre-Stretched, at no additional cost to you.

6x19 S - FC

Alps6 1S - EF

GRADE OPTIONS (N/mm²)
EHS (1770 / 1770)

PREFERRABLE SHEAVE HARDNESS 240 - 270 HB

DIAMETER RANGE

1/4 - 1/2 inch

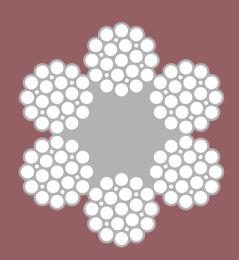
CORE	Fiber
TOTAL ELONGATION AT 10% MBL	≈ 0.41 %
CONSTRUCTIVE ELONGATION AFTER 10% MBL	≈ 0.18 %
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.23 %
PREFERRABLE FREQUENCE OF USE	≈ 2 times / hour
PREFERRABLE SPEED	< 6.56 ft / sec (2.0 m / sec)
OUTER STRAND DESIGN	Seale
NUMBER OF OUTER WIRES PER STRAND	9
NUMBER OF OUTER WIRES TOTAL	54
DISCARD ACCORDING ROPE CLASS	6x19 General discard criteria according to ISO 4344:2004

Minimum Breaking Force

Alps	6 _{1S -}	EF EHS (1770/1770)			
Dian	neter	Minimum Break	king Force (MBL)	Calculat	ed mass
in	mm	lb	kN	lb/ft	kg/m
1/4	6.35	5,200	23.1	0.10	0.149
5/16	7.94	8,100	36.0	0.16	0.238
	8	8,100	36.0	0.16	0.238
3/8	9.53	11,600	51.6	0.23	0.342
	10	12,900	57.4	0.24	0.361
7/16	11.1	15,700	69.8	0.30	0.440
	12	18,300	81.4	0.35	0.517
1/2	12.7	20,400	90.7	0.40	0.595

Alps6 1S-EF

Alps6 2F-TF Alps6 2F-EF


Alps6 2F-EI

Alps⁶ 1S – EF

Alps⁶ 2F - TF Alps⁶ 2F - EF

6x25 Fi - FC

PRE-STRETCHED

Alps6 2F - TF Alps6 2F - EF GRADE OPTIONS (N/mm²)

Traction (1180 / 1770)

EHS (1770 / 1770)

PREFERRABLE SHEAVE HARDNESS 170 - 200 HB

240 – 270 HB

DIAMETER RANGE

1/4 - 3/4 inch

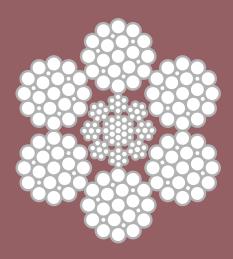
CORE	Fiber
TOTAL ELONGATION AT 10% MBL	≈ 0.41 %
CONSTRUCTIVE ELONGATION AFTER 10% MBL	≈ 0.18 %
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.23 %
PREFERRABLE FREQUENCE OF USE	≈ 2 times / hour
PREFERRABLE SPEED	< 6.56 ft / sec (2.0 m / sec)
OUTER STRAND DESIGN	Filler
NUMBER OF OUTER WIRES PER STRAND	12
NUMBER OF OUTER WIRES TOTAL	72
DISCARD ACCORDING ROPE CLASS	6x19 General discard criteria according to ISO 4344:2004

Minimum Breaking Force

Alps ⁶ 2F -		TF Traction (1180/17			70)		
Dian	neter	Minim	num Break	ing Force	(MBL)	Calculat	ed mass
in	mm	lb	kN	lb	kN	lb/ft	kg/m
1/4	6.35	3,600	16.0	5,200	23.1	0.10	0.149
5/16	7.94	5,600	24.9	8,100	36.0	0.16	0.238
	8	5,600	24.9	8,100	36.0	0.16	0.240
3/8	9.53	8,200	36.5	11,600	51.6	0.23	0.342
	10	9,100	40.5	12,900	57.4	0.25	0.376
7/16	11.1	11,000	48.9	15,700	69.8	0.31	0.461
	12	12,900	57.4	18,300	81.4	0.36	0.535
1/2	12.7	14,500	64.5	20,400	90.7	0.40	0.595
	14	17,600	78.3	24,800	110.3	0.49	0.728
9/16	14.3	18,500	82.3	25,700	114.3	0.51	0.759
5/8	15.9	23,000	102.3	31,600	140.6	0.63	0.938
	16	23,000	102.3	31,600	140.6	0.64	0.951
	18	28,600	127.2	40,400	179.7	0.81	1.204
3/4	19.1	32,000	142.3	45,200	201.1	0.90	1.339

Alps⁶ 2F - TF Alps⁶ 2F - EF Low Rise

Alps6 1S-EF


Alps6 2F-TF Alps6 2F-EF

Alps6 2F-E

6x25 Fi – IWRC

Alps6 2F - El

GRADE OPTIONS (N/mm²)
EHS (1770 / 1770)

PREFERRABLE SHEAVE HARDNESS 240 - 270 HB

DIAMETER RANGE

1/4 - 3/4 inch

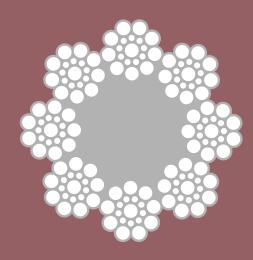
CORE	IWRC
TOTAL ELONGATION AT 10 % MBL	≈ 0.37 %
CONSTRUCTIVE ELONGATION AFTER 10% MBL	≈ 0.17 %
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.20 %
PREFERRABLE FREQUENCE OF USE	≈ 2 times / hour
PREFERRABLE SPEED	< 6.56 ft / sec (2.0 m / sec)
OUTER STRAND DESIGN	Filler
NUMBER OF OUTER WIRES PER STRAND	12
NUMBER OF OUTER WIRES TOTAL	72
DISCARD ACCORDING ROPE CLASS	6x19 General discard criteria according to ISO 4344:2004

Minimum Breaking Force

Alps	6 _{2F -}	EI EHS (1770 / 1770)			
Dian	neter	Minimum Break	ing Force (MBL)	Calculat	ed mass
in	mm	lb	kN	lb/ft	kg/m
1/4	6.35	6,137	27.3	0.114	0.169
5/16	7.94	9,596	42.7	0.178	0.265
	8	9,743	43.3	0.181	0.269
3/8	9.53	13,809	61.4	0.256	0.381
	10	15,224	67.7	0.283	0.421
7/16	11.1	18,787	83.6	0.348	0.519
	12	20,143	89.6	0.374	0.557
1/2	12.7	24,549	109.2	0.456	0.68
	14	29,832	132.7	0.554	0.83
9/16	14.3	31,069	138.2	0.577	0.86
5/8	15.9	38,487	171.2	0.715	1.064
	16	38,982	173.4	0.724	1.077
	18	49,323	219.4	0.916	1.363
3/4	19.1	55,528	247.0	1.032	1.535

Alps⁶ 2F - El

Alns6 1S-FF


Alps6 2F-TF Alps6 2F-EF

Alps6 2F-EI

8x19 S - FC

PRE-STRETCHED

AlpsXTRA8 1S - TF

GRADE OPTIONS (N/mm²)

Traction (1180 / 1770)

PREFERRABLE SHEAVE HARDNESS 170 - 200 HB

DIAMETER RANGE

1/4 - 3/4 inch

CORE	Fiber
TOTAL ELONGATION AT 10% MBL	≈ 0.50 %
CONSTRUCTIVE ELONGATION AFTER 10% MBL	≈ 0.27 %
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.23 %
PREFERRABLE FREQUENCE OF USE	≈ 2 times / hour
PREFERRABLE SPEED	< 6.56 ft / sec (2.0 m / sec)
OUTER STRAND DESIGN	Filler
NUMBER OF OUTER WIRES PER STRAND	9
NUMBER OF OUTER WIRES TOTAL	72
DISCARD ACCORDING ROPE CLASS	8x19 General discard criteria according to ISO 4344:2004

Minimum Breaking Force

AlpsXTI	RA ⁸ 1S -	TF Traction (118 0/ 1770)	ction		
Dian	neter	Minimum Break	ing Force (MBL)	Calculat	ed mass
in	mm	lb	kN	lb/ft	kg/m
1/4	6.35	3,600	16.0	0.09	0.134
5/16	7.94	5,600	24.9	0.14	0.208
	8	5,600	24.9	0.15	0.222
3/8	9.53	8,200	36.5	0.20	0.298
	10	9,100	9,100 40.5 0.23		0.347
	11	11,000	48.9	0.28	0.417
7/16	11.1	11,000	48.9	0.28	0.420
	12	12,900	57.4	0.33	0.490
1/2	12.7	14,500	64.5	0.36	0.536
	14	17,600	78.3	0.45	0.666
9/16	14.3	18,500	82.3	0.46	0.685
5/8	15.9	23,000 102.3 0.57		0.848	
	16	23,000	102.3	0.60	0.888
11/16	17.5	27,000	120.1	0.69	1.027
	18	28,600	127.2	0.74	1.100
3/4	19.1	32,000	142.3	0.82	1.220

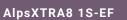
AlpsXTRA8 1S - TF

Low Rise

Alps6 1S-EF

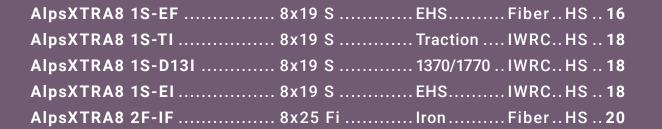
Alps6 2F-TF Alps6 2F-EF

Alps6 2F-EI



Mid Rise Hoisting Ropes

Wire Rope	Construction	Grade	Core	Lube	Page
Low Rise Hoisting Ropes					
Alps6 1S-EF	6x19 S	. EHS	Fiber.	HS.	6
Alps6 2F-TF	6x25 Fi	. Traction	Fiber.	HS.	8
Alps6 2F-EF	6x25 Fi	. EHS	Fiber.	HS.	8
Alps6 2F-EI	6x25 Fi	. EHS	IWRC.	HS.	10
AlpsXTRA8 1S-TF	8x19 S	. Traction	Fiber.	HS.	12



AlpsXTRA8 1S-TI AlpsXTRA8 1S-D13I AlpsXTRA8 1S-EI

AlpsXTRA8 2F-IF

High Rise Hoisting Ropes

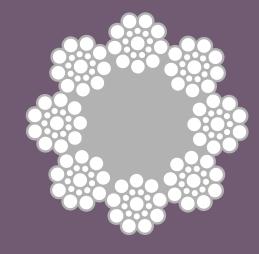
AlpsXTRA8	1W-D15I 1570
AlpsXTRA8	2F-D15I 8x25 Fi

Governor & Door Ropes

Governor Rope Iron	
Governor Rope Iron	Fiber
Door & Governor Rope 1960	
	37
	38
	40
	41
	45
	Governor Rope Iron Door & Governor Rope 1960

Consistent diameter & steady lay length

→ Learn more on page 59


Let Alps wire ropes save you time: No re-adjusting needed.

Alps Elevator ropes are Pre-Stretched, at no additional cost to you.

AlpsXTRA8 1S - EF

8x19 S - FC

PRE-STRETCHED

AlpsXTRA8 1S - EF

GRADE OPTIONS (N/mm²)
EHS (1770 / 1770)

PREFERRABLE SHEAVE HARDNESS 240 - 270 HB

DIAMETER RANGE

1/4 - 3/4 inch

CORE	Fiber		
TOTAL ELONGATION AT 10% MBL	≈ 0.50 %		
CONSTRUCTIVE ELONGATION AFTER 10% MBL	≈ 0.27 %		
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.23 %		
PREFERRABLE FREQUENCE OF USE	≈ 5 times / hour		
PREFERRABLE SPEED	< 9.84 ft / sec (3.0 m / sec)		
OUTER STRAND DESIGN	Seale		
NUMBER OF OUTER WIRES PER STRAND	9		
NUMBER OF OUTER WIRES TOTAL	72		
DISCARD ACCORDING ROPE CLASS	8x19 General discard criteria according to ISO 4344:2004		

Minimum Breaking Force

AlpsXTF	RA ⁸ 1S -	EF EHS (1770/1770)			
Diam	eter	Minimum Break	ing Force (MBL)	Calculat	ed mass
in	mm	lb	kN	lb/ft	kg/m
1/4	6.35	4,500	20.0	0.09	0.134
5/16	7.94	6,900	30.7	0.14	0.208
	8	6,900	30.7	0.15	0.222
3/8	9.53	9,900	44.0	0.20	0.298
	10	11,000	48.9	0.23	0.347
	11	13,500	60.1	0.28	0.417
7/16	11.1	13,500	60.1	0.28	0.420
	12	15,800	70.3	0.33	0.490
1/2	12.7	17,500	77.8	0.36	0.536
	14	20,200	89.9	0.45	0.666
9/16	14.3	22,100	98.3	0.46	0.685
5/8	15.9	27,200	121.0	0.57	0.848
	16	27,200	121.0	0.60	0.888
11/16	17.5	32,800	145.9	0.69	1.027
	18	34,700	154.4	0.74	1.100
3/4	19.1	38,900	173.0	0,82	1,220

AlpsXTRA8 1S - EF

AlpsXTRA8 1S-E

AlpsXTRA8 1S-TI
AlpsXTRA8 1S-D13I
AlpsXTRA8 1S-EI



AlpsXTRA8 2F-IF

Mid Rise Hoisting Ropes

AlpsXTRA8 1S - TI AlpsXTRA8 1S - D13I AlpsXTRA8 1S - EI

8x19 S - IWRC

AlpsXTRA8 1S - TI

AlpsXTRA8 1S - D13I AlpsXTRA8 1S - EI GRADE OPTIONS (N/mm²)

EHS (1770 / 1770)

Traction (1180 / 1770)
Dual (1370 / 1770)

PREFERRABLE SHEAVE HARDNESS 170 - 200 HB

190 – 230 HB

240 - 270 HB

DIAMETER RANGE

1/4 - 22 inch

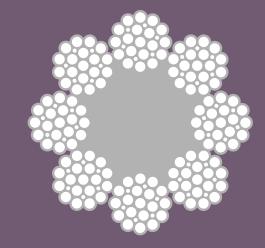
CORE	IWRC		
TOTAL ELONGATION AT 10% MBL	≈ 0.42 %		
CONSTRUCTIVE ELONGATION AFTER 10 % MBL	≈ 0.22 %		
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.20%		
PREFERRABLE FREQUENCE OF USE	≈ 5 times / hour		
PREFERRABLE SPEED	< 9.84 ft / sec (3.0 m / sec)		
OUTER STRAND DESIGN	Seale		
NUMBER OF OUTER WIRES PER STRAND	9		
NUMBER OF OUTER WIRES TOTAL	54		
DISCARD ACCORDING ROPE CLASS	8x19 General discard criteria according to ISO 4344:2004		

Minimum Breaking Force

Alps XTRA	Alps XTRA ⁸ 1S -		TI Traction (118 0/ 1770)				EI EHS (1770/1770)		
Dian	neter		Mini	mum Break	ing Force (MBL)		Calculat	ed mass
in	mm	lb	kN	lb	kN	lb	kN	lb/ft	kg/m
1/4	6.35	5,100	22.7	5,101	22.7	5,700	25.4	0.111	0.165
5/16	7.94	7,900	35.1	7,901	35.1	8,900	39.6	0.172	0.256
	8	8,040	35.8	8,048	35.8	9,055	40.3	0.175	0.261
3/8	9.53	11,400	50.7	11,402	50.7	12,900	57.4	0.247	0.368
	10	12,563	55.9	12,567	55.9	14,149	62.9	0.274	0.407
	11	15,201	67.6	15,197	67.6	17,120	76.2	0.331	0.493
7/16	11.1	15,500	69.0	15,502	69.0	17,500	77.9	0.337	0.501
	12	18,091	80.5	18,097	80.5	20,375	90.6	0.394	0.587
1/2	12.7	20,300	90.3	20,303	90.3	22,800	101.4	0.441	0.656
	13	21,232	94.4	21,245	94.5	23,912	106.4	0.463	0.688
	14	24,624	109.5	24,729	110	27,732	123.4	0.537	0.798
9/16	14.3	25,600	113.9	25,604	113.9	28,900	128.6	0.560	0.833
5/8	15.9	31,700	141.0	31,704	141.0	35,700	158.8	0.692	1.030
	16	32,162	143.1	32,148	143	36,221	161.1	0.701	1.043
11/16	17.5	38,300	170.4	38,299	170.4	43,200	192.2	0.838	1.242
	18	40,705	181.1	40,691	181	45,843	203.9	0.887	1.320
3/4	19.1	45,600	202.9	45,606	202.9	51,400	228.7	0.998	1.485
	22	60.806	270.5	60,806	270.5	68.481	304.6	1.325	1.972

AlpsXTRA8 1S - TI
AlpsXTRA8 1S - D13I
AlpsXTRA8 1S - EI

AlpsXTRA8 1S-EF


AlpsXTRA8 1S-TI
AlpsXTRA8 1S-D13I
AlpsXTRA8 1S-EI

AlpsXTRA8 2F-IF

AlpsXTRA8 2F - IF

8x25 Fi – FC

PRE-STRETCHED

AlpsXTRA 8 2F - IF

GRADE OPTIONS (N/mm²)
IRON (680 / 1770)

PREFERRABLE SHEAVE HARDNESS

< 180 HB

DIAMETER RANGE

1/4 - 3/4 inch

CORE	Fiber
TOTAL ELONGATION AT 10% MBL	≈ 0.50%
CONSTRUCTIVE ELONGATION AFTER 10 % MBL	≈ 0.27 %
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.23 %
PREFERRABLE FREQUENCE OF USE	≈ 10 times / hour
PREFERRABLE SPEED	< 13.12 ft /sec (4.0 m / sec)
OUTER STRAND DESIGN	Filler
NUMBER OF OUTER WIRES PER STRAND	12
NUMBER OF OUTER WIRES TOTAL	96
DISCARD ACCORDING ROPE CLASS	8x19 General discard criteria according to ISO 4344:2004

Minimum Breaking Force

AlpsXT	RA⁸ 2F -	IF Iron (680 / 1770)			
Diar	neter	Minimum Break	ing Force (MBL)	Calculat	ed mass
in	mm	lb	kN	lb/ft	kg/m
1/4	6.35	1,800	8.0	0.09	0.134
5/16	7.94	2,900	12.9	0.14	0.208
	8	2,900	12.9	0.15	0.222
3/8	9.53	4,200	18.7	0.20	0.298
	10	4,700	20.9	0.23	0.347
	11	5,600	24.9	0.28	0.417
7/16	11.1	5,600	24.9	0.28	0.420
	12	6,500	28.9	0.33	0.490
1/2	12.7	7,200	32.0	0.36	0.536
	13	7,496	33.6	0.39	0.586
	14	8,700	38.7	0.45	0.666
9/16	14.3	9,200	40.9	0.46	0.685
5/8	15.9	11,200	49.8	0.57	0.848
	16	11,200	49.8	0.60	0.888
11/16	17.5	13,400	59.6	0.69	0.888
	18	14,200	63.2	0.74	1.100
3/4	19.1	16,000	71.2	0.82	1.220

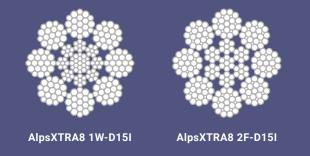
AlpsXTRA8 2F - IF

Mid Rise

AlneYTRAR 19-FF

AlpsXTRA8 1S-TI AlpsXTRA8 1S-D13I AlpsXTRA8 1S-EI

AlpsXTRA8 2F-IF



High Rise Hoisting Ropes

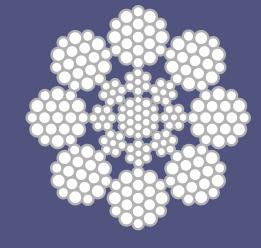
Wire Rope	Construction	Grade	Core	Lube	Page
Low Rise Hoisting Ropes					
Alps6 1S-EF	6x19 S	EHS	Fiber	HS.	6
Alps6 2F-TF	6x25 Fi	. Traction	Fiber	HS.	8
Alps6 2F-EF	6x25 Fi	EHS	Fiber	HS.	8
Alps6 2F-EI	6x25 Fi	. EHS	IWRC	HS.	10
AlpsXTRA8 1S-TF	8x19 S	. Traction	Fiber	HS.	12
Mid Rise Hoisting Ropes					
AlpsXTRA8 1S-EF	8x19 S	EHS	Fiber	HS.	16
AlpsXTRA8 1S-TI	8x19 S	Traction	IWRC	HS.	18
AlpsXTRA8 1S-D13I	8x19 S	1370/1770	IWRC	HS.	18
AlpsXTRA8 1S-EI	8x19 S	EHS	IWRC	HS.	18
AlpsXTRA8 2F-IF	8x25 Fi	Iron	Fiber	HS.	20

AlpsXTRA8 1W-D15I 8x19 W 1570/1770 .. IWRC .. XS... 24 AlpsXTRA8 2F-D15I...... 8x25 Fi 1570/1770 .. IWRC .. XS... 26

Governor & Door Ropes

AlpsXTRA8 1S-IF	Alps6 1S-IFGovernor Rope Iron.
AlpsDR	AlpsXTRA8 1S-IFGovernor Rope Iron
	AlpsDR

Elevator wire rop	e wedge sockets	 	
Reeving splices		 	
Lubricant		 	


Consistent diameter & steady lay length

→ Learn more on page 59

Let Alps wire ropes save you time: No re-adjusting needed.

Alps Elevator ropes are Pre-Stretched, at no additional cost to you.

8x19 W - IWRC

AlpsXTRA 8 1W - D15I

GRADE OPTIONS (N/mm²)

Dual 1570 / 1770

PREFERRABLE SHEAVE HARDNESS 220 - 250 HB

DIAMETER RANGE

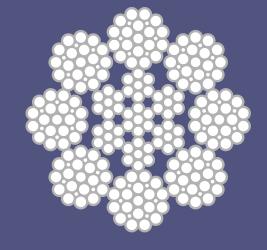
6 – 10 mm

CORE	IWRC
TOTAL ELONGATION AT 10 % MBL	≈ 0.42 %
CONSTRUCTIVE ELONGATION AFTER 10 % MBL	≈ 0.22 %
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.20 %
PREFERRABLE FREQUENCE OF USE	≈ 20 times / hour
PREFERRABLE SPEED	< 16.40 ft / sec (5.0 m / sec)
OUTER STRAND DESIGN	Warrington
NUMBER OF OUTER WIRES PER STRAND	12
NUMBER OF OUTER WIRES TOTAL	96
DISCARD ACCORDING ROPE CLASS	8x19 General discard criteria according to ISO 4344:2004

Minimum Breaking Force

AlpsXTI	R A⁸ 1W -	D15I Dual (1570 / 1770)			
Dian	neter	Minimum Breaking Force (MBL)		Calculated mass	
in	mm	lb	kN	lb/ft	kg/m
	6	4,810	21.4	0.08	0.123
1/4	6.35	5,390	24.0	0.09	0.137
5/16	7.94	8,427	37.5	0.14	0.215
	8	8,542	38.0	0.17	0.260
	9	10,834	48.2	0.22	0.330
3/8	9.53	12,139	54.0	0.25	0.370
	10	13,374	59.5	0.27	0.407
	13	22,478	100.0	0.46	0.688

High Rise


AlpsXTRA8 1W-D

AlpsXTRA8 2F-D15

AlpsXTRA8 1W - D15I

8x25 Fi - IWRC

AlpsXTRA 8 2F - D15I

GRADE OPTIONS (N/mm²)

Dual 1570 / 1770

PREFERRABLE SHEAVE HARDNESS 220 - 250 HB

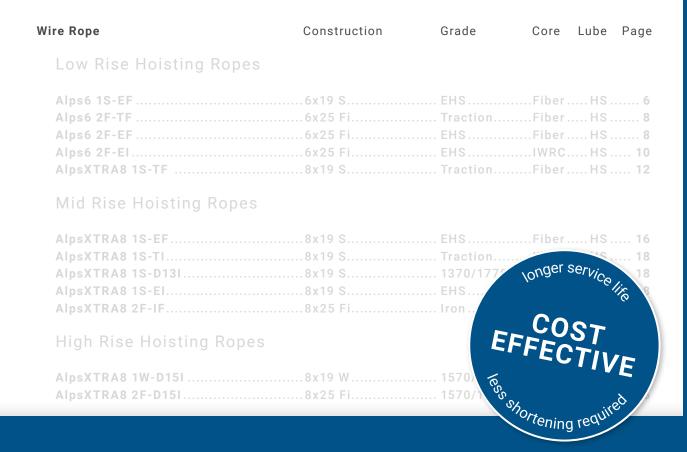
DIAMETER RANGE

1/4 - 22 mm

CORE	IWRC
TOTAL ELONGATION AT 10% MBL	≈ 0.42 %
CONSTRUCTIVE ELONGATION AFTER 10 % MBL	≈ 0.22 %
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.20 %
PREFERRABLE FREQUENCE OF USE	≈ 10 times / hour
PREFERRABLE SPEED	< 13.12 ft /sec (4.0 m / sec)
OUTER STRAND DESIGN	Filler
NUMBER OF OUTER WIRES PER STRAND	12
NUMBER OF OUTER WIRES TOTAL	96
DISCARD ACCORDING ROPE CLASS	8x19 General discard criteria according to ISO 4344:2004

AlpsXT	RA⁸ 2F -	D15I Dual (1570 / 1770)			
Dian	neter	Minimum Breaking Force (MBL)		Calculated mass	
in	mm	lb	kN	lb/ft	kg/m
1/4	6.35	5,404	24.0	0.11	0.164
5/16	7.94	8,450	37.6	0.17	0.256
	8	8,542	38.0	0.17	0.260
3/8	9.53	12,160	54.1	0.25	0.369
	10	13,374	59.5	0.27	0.407
	11	16,162	71.9	0.33	0.492
7/16	11.1	16,544	73.6	0.34	0.502
	12	19,241	85.6	0.39	0.586
1/2	12.7	21,618	96.2	0.44	0.656
	13	22,651	100.8	0.46	0.687
	14	26,299	117.0	0.54	0.798
9/16	14.3	27,370	121.8	0.56	0.830
5/8	15.9	33,778	150.3	0.69	1.024
	16	34,166	152.0	0.70	1.040
11/16	17.5	40,711	181.1	0.70	1.040
	18	43,382	193.0	0.89	1.320
3/4	19.1	48,640	216.4	0.99	1.475
	22	64,871	288.6	1.32	1.967

AlpsXTRA8 2F - D15I



AlpsXTRA8 1W-D

Governor & Door Ropes

Alps6 1S-IF	Governor Rope	Iron	Fiber	30
AlpsXTRA8 1S-IF	Governor Rope	Iron	Fiber	32
AlneDP	Door & Governor	1060	Stool	21

dditional Products	 37
Elevator wire rope wedge sockets	 38
Reeving splicesLubricant	
echnical Information	

Alps⁶ 1S - IF
Governor Rope

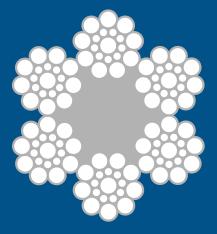
AlpsXTRA⁸ 1S - IF
Governor Rope

AlpsDR

Door & Governor Rope

→ Learn more on page 59

Let Alps wire ropes save you time: No re-adjusting needed.


Alps Elevator ropes are Pre-Stretched, at no additional cost to you.

PRE-STRETCHED

Alps6 1S - IF

GRADE OPTIONS (N/mm²)

Iron (680 / 1770)

PREFERRABLE SHEAVE HARDNESS < 180 HB

DIAMETER RANGE

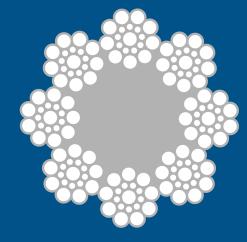
6mm - 1/2 inch

CORE	Fiber
TOTAL ELONGATION AT 10% MBL	≈ 0.41 %
CONSTRUCTIVE ELONGATION AFTER 10 % MBL	≈ 0.18%
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.23 %
OUTER STRAND DESIGN	Seale
NUMBER OF OUTER WIRES PER STRAND	9
NUMBER OF OUTER WIRES TOTAL	54
DISCARD ACCORDING ROPE CLASS	6x19 General discard criteria according to ISO 4344:2004

Minimum Breaking Force

Alps⁶ 1 S -		IF Iron (680 / 1770)			
Dian	neter	Minimum Breaking Force (MBL)		Calculated mass	
in	mm	lb	kN	lb/ft	kg/m
	6	1,872	8.3	0,09	0,140
1/4	6,35	2,200	9.8	0,10	0,149
5/16	7,94	3,200	14.2	0,16	0,238
	8	3,362	15.0	0,16	0,238
3/8	9,53	5,000	22.2	0,23	0,342
	10	5,195	23.1	0,24	0,361
7/16	11,1	6,400	28.5	0,30	0,440
	12	7,488	33.3	0,35	0,517
1/2	12,7	8,400	37.4	0,40	0,595

Alps6 1S-IF


AlpsXTRA8 1S-IF

AlpsDR

Alps⁶ 1S - IF

8x19 FS – FC Governor

PRE-STRETCHED

AlpsXTRA 8 1S - IF

GRADE OPTIONS (N/mm²) Iron (680 / 1770)

PREFERRABLE SHEAVE HARDNESS

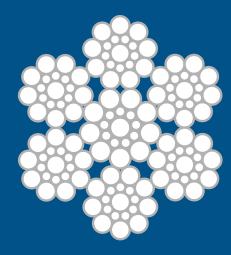
< 180 HB

DIAMETER RANGE 1/4 - 3/4 inch

CORE	Seale
TOTAL ELONGATION AT 10% MBL	≈ 0.50 %
CONSTRUCTIVE ELONGATION AFTER 10 % MBL	≈ 0.27 %
ELASTIC ELONGATION BETWEEN 2% AND 10% LOAD	≈ 0.23 %
OUTER STRAND DESIGN	Seale
NUMBER OF OUTER WIRES PER STRAND	9
NUMBER OF OUTER WIRES TOTAL	72
DISCARD ACCORDING ROPE CLASS	8x19 General discard criteria according to ISO 4344:2004

AlpsXT	RA ⁸ 1S -	IF Iron (680 / 1770)			
Dian	neter	Minimum Breaking Force (MBL)		Calculated mass	
in	mm	lb	kN	lb/ft	kg/m
1/4	6.35	1,800	8.0	0.09	0.134
5/16	7.94	2,900	12.9	0.14	0.208
	8	2,900	12.9	0.15	0.222
3/8	9.53	4,200	18.7	0.20	0.298
	10	4,700	20.9	0.23	0.347
	11	5,600	24.9	0.28	0.417
7/16	11.1	5,600	24.9	0.28	0.420
	12	6,500	28.9	0.33	0.490
1/2	12.7	7,200	32.0	0.36	0.536
	14	8,700	38.7	0.45	0.666
9/16	14.3	9,200	40.9	0.46	0.685
5/8	15.9	11,200	49.8	0.57	0.848
	16	11,200	49.8	0.60	0.888
	18	14,200	63.2	0.74	1.100
3/4	19.1	16,000	71.2	0.82	1.220

AlpsXTRA8 1S - IF



AlpsDr

GRADE OPTIONS (N/mm²)
1960

PREFERRABLE SHEAVE HARDNESS < 180 HB

DIAMETER RANGE

3 mm − 1/4 inch

CORE	Steel
FINISH	Galvanized

Minimum Breaking Force

Alp	sDr	1960					
Dian	neter	Minimum Break	ing Force (MBL)	Calculat	ited mass		
in	mm	lb	kN	lb/ft	kg/m		
	3.0	1,962	8.7	0.03	0.051		
1/8	3.2	2,001	8.9	0.04	0.058		
	4.0	3,488	15.5	0.06	0.091		
	5.0	3,911	17.4	0.067	0.100		
1/4	6.35	9,012	40.1	0.15	0.230		

Alps6 1S-IF

AlpsXTRA8 1S-IF

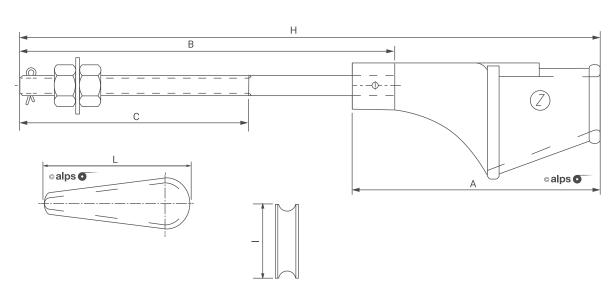
AlpsDR

AlpsDr

Additional Products

Wire Rope

	Low Rise Hoisting Ropes	4
	Mid Rise Hoisting Ropes	14
	High Rise Hoisting Ropes	22
	Governor & Door Ropes	28
	Additional Products	
	Elevator wire rope wedge sockets	.38
	Reeving splices	.40
	Lubricant	. 41
Т	echnical Information	45

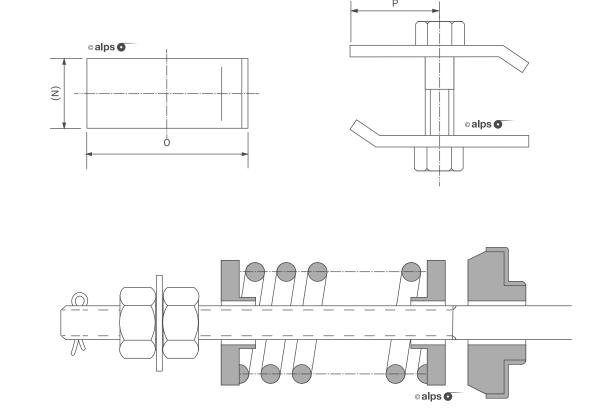


39

Elevator wire rope wedge sockets

WEDGE SOCKET ASSEMBLY SPECIFICATIONS

Part No.	Size	Α	В	С	Nut Size	Н
ELZ 14	1/4" - 5/16" (6 - 8 mm)	5"	12", 18", 24"	9.05"	M12	17", 23", 29"
ELZ 38	3/8" (10 mm)	6"	12", 18", 24"	9.05"	M14	17", 23", 29"
ELZ 12	7/16" - 1/2" (11 - 13 mm)	7.5"	12", 18", 24", 30", 36", 42"	9.05"	M20	18", 24", 30", 36", 42", 48"
ELZ 58	9/16" - 5/8" (14 - 16 mm)	7.5"	12", 18", 24", 30", 36", 42"	9.05"	M20	18", 24", 30", 36", 42", 48"
ELZ 34	11/16" - 3/4" (17.5 - 19 mm)	9"	12", 18", 24", 30", 36", 42"	9.05"	M24	19.5", 25.5", 31.5", 37.5", 43.5", 49.5"



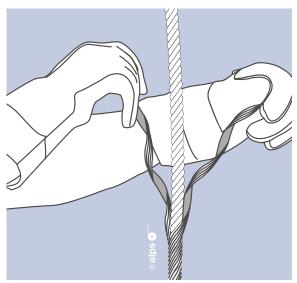
WEDGE INSERT SPECIFICATIONS

Part No.	Size	L	1	Color
EL ZZWW8	1/4" - 5/16" (6 - 8 mm)	3.25"	0.9"	White
EL ZZWW10	3/8" (10 mm)	3.75"	1.3"	Red
EL ZZWW13	7/16" - 1/2" (11 - 13 mm)	4"	1.6"	Blue
EL ZZWW16	9/16" - 5/8" (14 - 16 mm)	4.7"	1.3"	Yellow
EL ZZWW19	11/16" - 3/4" (17.5 - 19 mm)	5.5"	1.57"	Green

RETAINING CLIP SPECIFICATIONS

Part No.	Size	N	0	Р	Nut Size	Balt Size
EL ZZWRC810	1/4" - 5/16" (6 - 8 mm)	1"	1.58"	9.05"	M6	M6 x 30 mm
EL ZZWRC1316	7/16" - 5/8" (10 mm)	1"	1.84"	9.05"	M6	M6 x 35 mm
EL ZZWRC19	11/16" - 3/4" (17.5 - 19 mm)	1"	2.14"	9.05"	M6	M6 x 40 mm

SPRING ISOLATION BUSHING ASSEMBLIES


Part No.	Size
EL ZZWS10	3/8" (10 mm)
EL ZZWS13	7/16" - 1/2" (11 - 13 mm)
EL ZZWS19	11/16" - 3/4" (17.5 - 19 mm)

Reeving splices

REEVING SPLICE SPECIFICATIONS

	Wire Rope)			Units	wt/lb
	Size		Mean Diam	neter		
Catalog Nr.	in	mm	in	mm	Per Cart	on
RS-2102	5/16	8	0.312	8.0	50	30
RS-2103	3/8	9	0.375	9.5	50	30
RS-2104	1/2	11	0.4375	11.0	50	30
RS-2105	1/2	12	0.500	12.7	10	8
RS-2106	9/16	14	0.5625	14.2	10	9
RS-2107	5/8	15	0.625	15.8	10	13
RS-2108	11/16	17	0.6875	17.4	10	17
RS-2109	3/4	19	0.750	19.0	10	18
RS-2110	13/16	20	0.8125	20.6	10	24
RS-2111	7/8	22	0.875	22.2	10	28
RS-2112	1	25	1.00	25.4	10	41

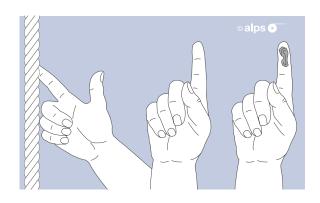
Reeving splices are an inexpensive, disposable device used in elevator repairs to aid passing married ropes over pulleys and sheaves.

REEVING SPLICE SPECIFICATIONS

Length		_	Overall Dian	neter
in	mm	Number of subsets	in	mm
19	483	3	0.415	10.54
22	558	3	0.477	12.11
25	635	4	0.539	13.71
29	736	3	0.640	16.25
32	812	4	0.702	17.83
36	914	3	0.797	20.24
40	1016	3	0.887	22.52
42	1066	3	0.950	24.13
46	1168	3	1.036	26.31
50	1270	3	1.113	28.27
56	1422	4	1.238	31.44
	in 19 22 25 29 32 36 40 42 46 50	in mm 19 483 22 558 25 635 29 736 32 812 36 914 40 1016 42 1066 46 1168 50 1270	in mm Number of subsets 19 483 3 22 558 3 25 635 4 29 736 3 32 812 4 36 914 3 40 1016 3 42 1066 3 46 1168 3 50 1270 3	in mm Number of subsets in 19 483 3 0.415 22 558 3 0.477 25 635 4 0.539 29 736 3 0.640 32 812 4 0.702 36 914 3 0.797 40 1016 3 0.887 42 1066 3 0.950 46 1168 3 1.036 50 1270 3 1.113

Lubricant

LUBRICATION AND RE-LUBRICATION


In ropes, there is friction between wires, strands and fiber cores. All these combinations need lubrication to assure an appropriate friction behavior and a good rope-lifetime. New ropes are lubricated during the production process. For high rise applications Alps ropes have a higher spec XS lube; other, less demanding applications use our standard lube (HS).

A long period of time between production and Re-lubrication is necessary to prevent rope installation, as well as incorrect storage condidamages from rouging and corrosion. tions, can lead to dry strands and cores.

- Upon installation, new ropes must be checked for sufficient lubrication
- · If necessary, new ropes must be relubricated to assure rope function from the start of the operation and a long ropelifetime!
- Periodically ropes in service must be relubricated

Elevator ropes shall be lubricated and re-lu- Ropes should be lubricated the correct way: touch the rope and then check the finger for bution of lubricant to the ropes is ensured. lubricant. Important: Governor ropes are not lubricated during manufacturing and should not This type of lubrication does not need any be lubricated in the field either.

lubricant.

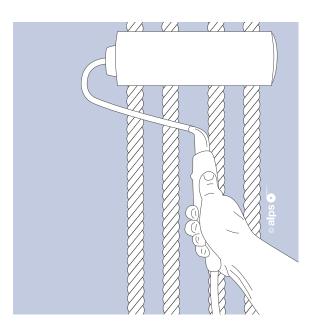
bricated at least once a year or every 250,000 Lubricant is pumped from a canister to a rope starts. A simple and practical option is to lubrication device. Equal and controlled distri-

action for a longer period of time. Brushes are mounted to each lubricant can. The can Elevator ropes shall be lubricated and re-lu- is under pressure and slowly presses the bricated at least once a year or every 250,000 lubricant through the brushes to the ropes. The starts. A simple and practical option is to amount of lubricant can be set with the timer touch the rope and then check the finger for on the back side of each can. Timing can be chosen between 1 and 12 months. Automated rope lubrication is easy and safe.

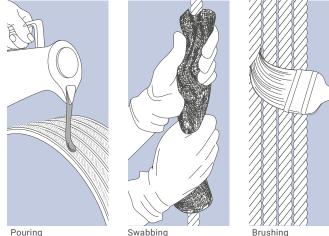
> Our product supports customers for problem-free rope lubrication and long service life span of the ropes.

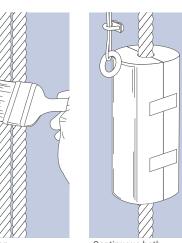
LUBRICANT QUANTITY

The amount needed for elevator ropes depends a lot on the installation and environment.


Influences, such as high elevator frequency, shaft temperature or draft from ventilation must be considered.

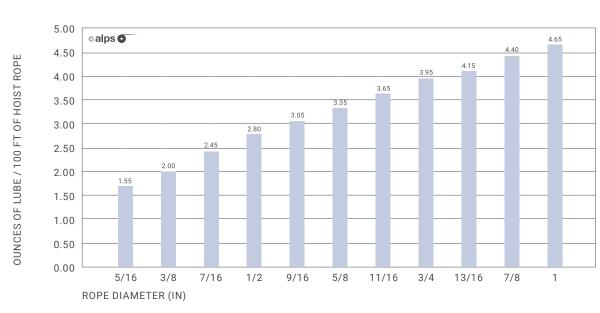
Lubricant should be compatible with the originally applied product by the manufacturer. Lubricant must be free of acids and alkalis. Lubricant should hold a high film strength and some anti-corrosion additives. The lubricant's viscosity should be capable of penetrating the interstices between wires under operating conditions. Intrusion of lubricant is supported due to capillarity within the rope parts. Lubricant should offer good adhesion with a friction coefficient of μ 0.09 [-] for the material pair steel/cast iron.


In high speed applications, attention should be paid to the amount of lubricant used. Alps ropes have a more strict spec to minimize lubricant spillage in high speed and high rise applications.


Lubrication of elevator ropes is a demanding task: Lubricant for elevator ropes should sufficiently lubricate between the rope parts such as wires, strands and rope core. At the same time, it should provide good adhesion between rope and sheave.

AlpsLube 60™ supports all the lubrication requirements.

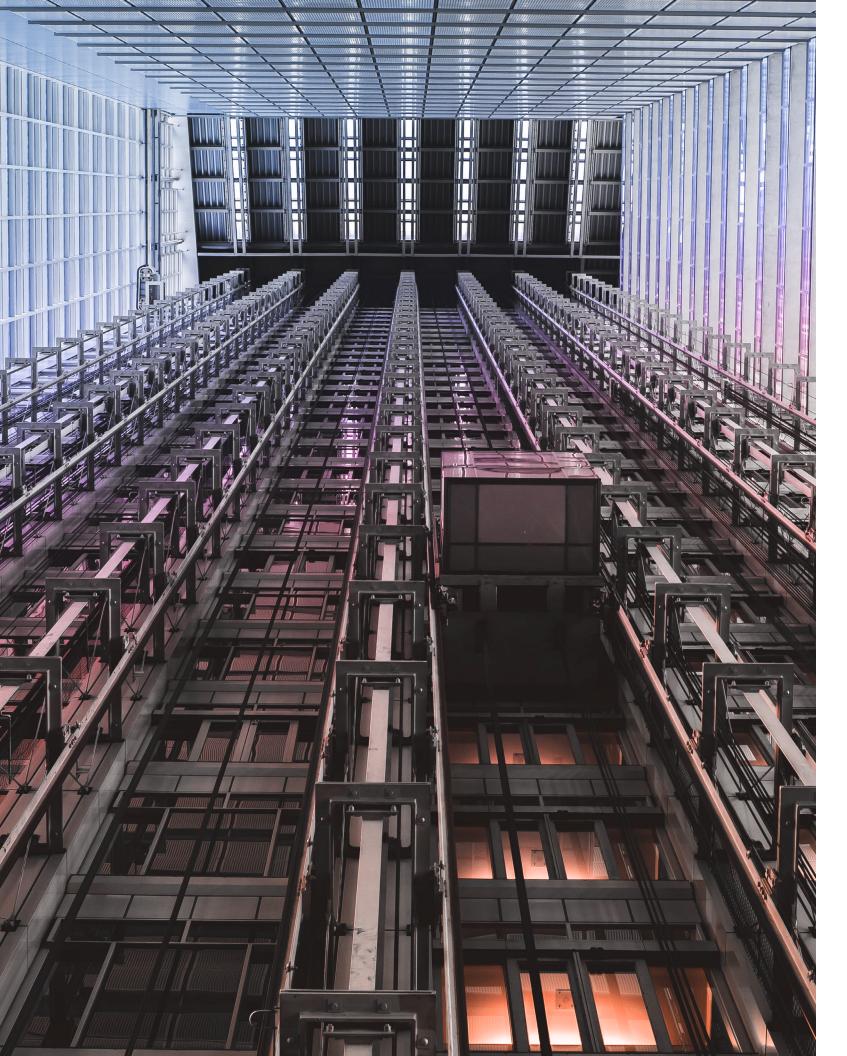
Ropes should not be lubricated in these ways:



The amount of lubricant applied this way is out of control. Over-lubrication will lead to dangerous slippage and pollution of the machine room.

This chart is only a guideline to determine the amounts of **ounces** of lubricant **per** rope diameter and 100 ft of rope length.

Product code key

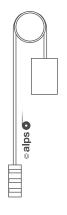


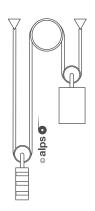
Technical Information

Wire Rope

Low Rise Hoisting Ropes4
Mid Rise Hoisting Ropes
High Rise Hoisting Ropes
Governor & Door Ropes
Additional Products
Technical Information
AlpsELEC
Elevator rope types
Hoist ropes and cores
Lay types
Rope design
Strand constructions
Lay length54
Design and calculation
Sheave groove shapes
Production
Pre-stretching59
End fittings
Rope discard criteria64

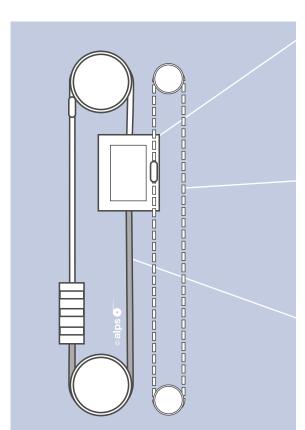
AlpsELEC


ESTIMATED ROPE LIFE CALCULATION SOFTWARE


designed to help the elevator professionals tool available to all Alps rope users.

The determination of the life expectancy of an select the best rope for any application and elevator rope system is a reasonably complex **determine the lifetime** of the wire rope. Based process due to diverse factors that affect such on many years of technical experience in the a system. AlpsELEC is a computer program elevator market, Alps developed a powerful

Elevator rope types



HOIST ROPES

In 1:1 installations hoist ropes are fixed on the In 2:1 installations hoist ropes are fixed on the top of the car and counterweight and run over top of the elevator shaft and run over pullies the drive sheave.

fixed on the elevator and counterweight top.

DOOR OPERATING ROPES

Elevator doors on each floor and in the car are driven by a motor moving the door operating ropes.

GOVERNOR ROPES

This type of rope initiates the **emergency** brake system in case of uncontrolled speed downwards. It is a safety part.

COMPENSATING ROPES

In higher installations this type of rope compensates the weight of the hoist ropes and is fixed below cabin and counterweight running over a deviation sheave in the bottom of the elevator shaft.

Hoist ropes and cores

also possible.

The center of each stranded rope is called the The core has a supporting function. It takes core. This is made from fiber or metal wire. over all pressure forces directed against the Combinations of the materials mentioned are center of the rope and prevents the strands from touching each other. Hoist ropes used for elevators are:

FIBER CORE ROPES

Hemp cores

- Natural fiber
- Unstable and soft
- Unsuitable for elevator ropes

Poly Propylene (PP) cores

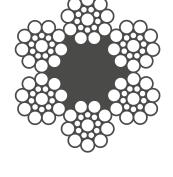
- Man-made fiber
- Stable, firm, precise
- Not heat resistant
- · Not for elevator hoist ropes

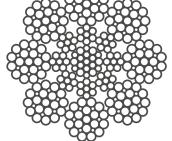
Sisal cores

- Natural fiber
- Stable and firm
- Heat resistant
- · Best material for hoist fiber cores

Fiber core ropes can be used up to 80 m and 3 - 4 m/s.

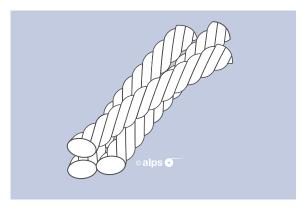
FULL STEEL ROPES 8 OR 9 OUTER STRANDS

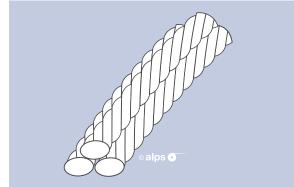

Steel core in form of a strand


• Can be used for max. 6 outer strands

Independent wire rope core (IWRC)

• Can be used for 8 or more strands


IWRC ropes with 8 or 9 outer strands can be used up to 400 m and 5 - 8 m/s.



Lay types

In elevators you find different types of rope.

STANDARD LAY

Strands lay on each other with high point Strands lay on each other with low line **pressure**. Strands of all layers are in different directions and lay lengths. Each layer requires directions and lay lengths. All layers can be a separate production run. A poor fill-factor produced in one operation run. A good fill-factor results in diameter-reduction, elongation and tor results in a little diameter-reduction, low in a short service life.

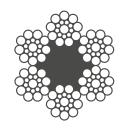
PARALLEL LAY

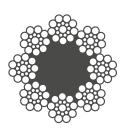
pressure. Strands of all layers are in the same elongation and in a long service life. Parallel laid ropes are more sensitive to untwisting than standard laid ropes.

The use of parallel laid ropes is recommended for high rise installations.

Rope Design

PRE-FORMED ROPES

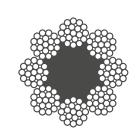

When the ropes are **preformed**, the strands This way strands **fit exactly** around the rope

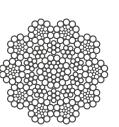

are individually brought into their final helical core. Ropes can be cut without fixation and shape immediately before the stranding point. strands remain in position. Also, broken wires do **not stick out of the rope** structure.

GOVERNOR ROPES

They are **not friction driven**. Governor ropes The blocked Governor rope initiates the brake are fixed to the cabin and run in a loop over system at the cabin. The brake-shoes clamp to the overspeed governor on top of the shaft, a the guide rail and the cabin comes to a stop. deviation sheave in the basement of the shaft and back to the car. These ropes are moving
In the US Governor ropes can be in iron grade the Governor rope sheave. They are not (680 N/mm²). Diameters of Governor ropes friction driven. Due to little friction, they can are between 8 to 10, sometimes 12 mm. contain man maid fiber cores, e.g.: Polypropylene (PP). Governor ropes stand out with a stable diameter and little elongation. For safety reasons only a small amount of lubricant is applied.

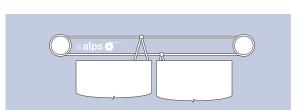
If the car descends faster than it's designed to, the Governor rope is blocked.

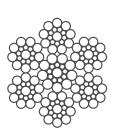




COMPENSATION ROPES

Drive sheaves need power and friction to move Single large diameter ropes or coated guided the weights of the car, passengers, hoist ropes and travelling cables. Compensating ropes weights. The use of coated chains is limited to balance the hoist rope weight. In addition, they reduce extreme sheave and rope wear, increase the system performance and riding comfort, and increase hoist rope and sheave lifetime. Using the same rope type for hoist and compensating ropes can avoid a rope mix-up in the field.


chains can be used to compensate hoist rope approx. 500 ft (150 m) installation height and 690 ft / min (3.5 m / s).

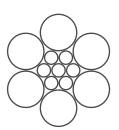


DOOR OPERATING ROPES

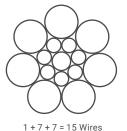
moving the doors.

Door operating ropes are installed around two Ropes used for this high demanding operation small diameter pulleys of which one is driven are in a range of 1/8" (3.2 mm) to 3/16" by a motor. The ropes are **fixed** to components **(4.8 mm)**. Constructions are **7x19 Seale** with zinc coated wires of 1960 N/mm².

Strand constructions


flexible it is. Thick outer wires are suitable high numbers of bends. for exposure to abrasion or high transverse

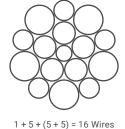
The more wires a construction has, the more pressure; thin outer wires are more suitable for


SEALE

Seale is one of the **most used** strand conplaced in the grooves of the previous layer. This wires is avoided because all outer wires are large to provide good rope bending behavior.

structions for elevators. In 1885 Thomas Seale results in **linear contacts** between all wires. received a patent in the USA for this design. The parallel laid wires in the strands provide The **number of wires** is the same in **every** a very good filling factor and a **high breaking** layer. Therefore, the wire diameter must be load. Seale constructions should be used up to larger from layer to layer. Friction driven instaladiameter of 1/2" (12.7 mm). If used for larger lations require large outer wires. Crossing of diameters the outer wire diameters are too

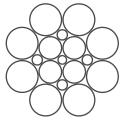
1 + 6 + 6 = 13 Wires

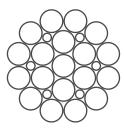

WARRINGTON

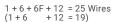
The wires of the **first layer** have the **same** The outer wires of this construction are smaller diameter. There is a wire in each of the grooves than in the Seale construction of the same in the first layer. Smaller diameter wires lie diameter. Warrington strands have a very good between these wires. The contact of all wires are linear.

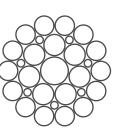
filling factor.

It is recommended to use this type of elevator rope for rope diameters larger than of 1/2" $(12.7 \, \text{mm}).$

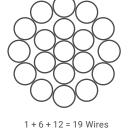


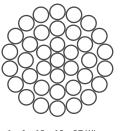

FILLER

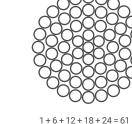

At least three wire layers have three different Space between the inner and outer wire layer outer layer is twice as large. The contact of all outer wires are smaller than in Seale or Warwires are linear. In various countries, the cored rington constructions of the same diameter. calculations.


wire diameters, but the same diameter for are filled with small diameter wires. This is each wire layer. The number of wires in the first what gives the construction its name. With layer and the filler layer is the same, that of the strand construction of 21 wires, the wire is not taken into account in cross-section Ropes with filler strands have a good bending behavior. They are very suitable for large rope diameters. Due to the small filler wire diameter, filler constructions are not recommended for small diameter ropes.

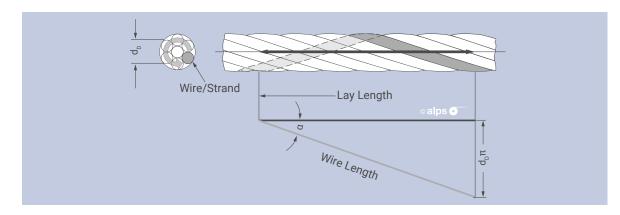
All above mentioned strands can be produced in a single production run. Due to parallel laid wires, there is line contact between all wires. This results in a good lifetime span.


STANDARD


layers **cross** the underlying layers at an acute duction run. angle. This leads to point contacts.


Except for the core wire, all wires have the **same** Therefore, the **life span** of ropes with standard diameter. The number of wires increases by laid strands is shorter than Seale, Warrington six with each additional layer. The wires of all or Filler. Each wire layer requires an extra pro-

> Ropes with standard strand constructions are rarely used for elevators.



1 + 6 + 12 + 18 = 37 Wires Wires

Lay length

The lay length is one rotation of the wire around the strand center or the strand around the rope center. Wire and strand diameter are in direct relation with strand or rope lay lengths.

None of these rope parameters can be changed separately as you can see in the design pictures next page.

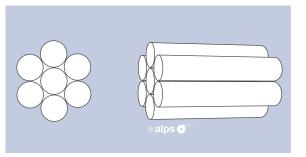

Design and calculation

By design we understand the exact geometric The adjacent strands / ropes are optimized and definition of wires, strands and ropes. The have the **same diameter**. later use of the rope dictates the limits of the design choice.

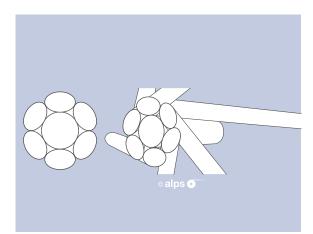
It is a great advantage for users if the rope designer knows the conditions of use as precisely as possible. This knowledge makes If the lay length is changed, wire / strand it easier to determine the **optimal rope type**. which can be expected to have trouble-free operation and a long service life. Thanks to the
If wire / strand diameters are changed, the lay use of a **computer**, the necessary **geometric lengths** must be adjusted. calculations can be carried out precisely.

If the lay length is changed, while the construction remains the same, it is necessary to adapt the wire / strand diameter.

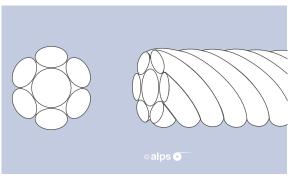
diameters must be adjusted.


Normal lay length

Short lay length



Very short lay length


CIRCLE-MODEL

If seven identical cylinders are placed next to each other as in the arrangement shown, the simplest model of a strand / rope construction is created. It can be seen that all neighboring cylinders are in **contact** and that the **cross** sections are circular in shape.

ELLIPSIS-MODEL

If **six identical** cylinders are placed at an angle on a vertical one, elliptical cross sections result from the **inclined cylinders**. It can be seen that the cylinders require more circumferential space in an inclined position than in a vertical position. If the **middle** one is to touch the inclined cylinders, it must be larger in diameter. The ellipse model only approximates reality, although it is more precise than the circle-model. It is still widely used as a basis for calculations.

BENT-ELLIPSIS-MODEL

If **six identical** rods are bent around a cylinder, this creates cross sections in curved elliptical shapes. Since this model corresponds to reality, today's computer programs are based on this basis. The more precisely the calculation agrees with reality, the higher the quality of the basis for the construction.

Sheave groove shapes

There are four groove shapes in traction sheaves:

ROUND GROOVE

Round groove with undercut (also known as semicular groove)

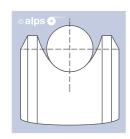
The round groove offers the worst power transmission of all the groove types.

ROUND GROOVE WITH UNDERCUT

Round groove with undercut (also known as seat groove)

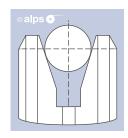
If a rectangular groove is pierced under the round or rope groove, it is referred to as an undercut. The round groove with undercut is the most common groove shape.

V-GROOVE

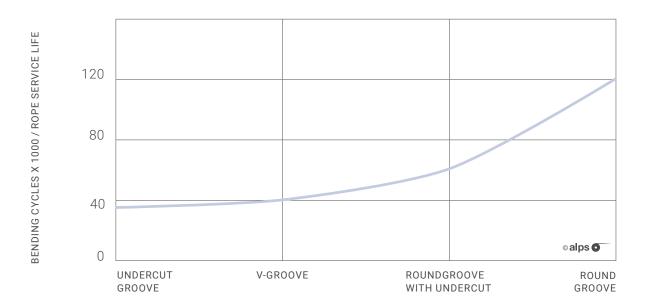

With the **V-groove** there is enormous transverse pressure on the rope cross-section, which is why the V-groove places the greatest strain on the rope.

V-GROOVE WITH UNDERCUT

However, the **V-groove** offers the greatest driving ability but the shortest rope life span.


life.

Depending on the groove shape used, the rope The stronger the undercut, the greater the is guided well (round groove) or pressed into contact pressure and the greater the wear on the groove (wedge groove). The guidance and the rope and the rope groove. The undercut the pressure are two factors that have a sig- angle, which is designated with an angle nificant influence on the one hand the traction between the rope center point and the two capability and on the other hand the service transition points from the groove, is between a minimum of 70° and a maximum of 105°.



Groove profiles and impact on rope service life

Production

ROPE WIRE

The raw material for the wire production is final strength is achieved through suitable in material strength and hardness. The required after the last drawing process.

wire rod. It is drawn to the required dimen- measures, for example, heat treatment sions through drawing dies with graduated (patenting), number of drawing stages, etc. If diameters. This process results in an increase necessary, rope wires are galvanized before or

ROPE CORE

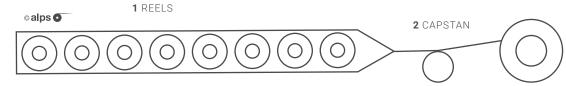
consist of **several strands**. Production takes metal wires are strands or ropes.

Yarns made from synthetic or natural fibers place in one operation on modern systems. If are processed into strands, which are used necessary, yarns should be impregnated with individually as cores. Cores for thicker ropes lubricant before processing. Inlays made of

ROPE STRANDS

required wire lengths.

The number of wire spools required for the the die. strand construction are inserted into the stranding machine.


The **stranding machine** consists of a **rotating** apply a **film of lubricant** to each wire. part, one or two capstans and the winding device.

Wires for elevator rope strands are between The reels 1 are connected to the capstan 2 by **0.1 mm** and **1.5 mm** in diameter. Delivery takes a gear unit. The lay length is selected with the place in coils or on spools. Rope wire can be appropriate gear setting. The capstans pull the supplied directly on machine spools. This wires out of the rotor through hole-plate, die and eliminates the need to rewind and cut to the post-forming device. The hole-plate arranges the different wire diameters according to the construction and they are brought together in

> If necessary, the **lubricant** is applied after the hole-plate. Only at this point it is possible to

> In the post-forming device, the strand is given the shape it needs for further processing. The suitable stranding machine spool 3 takes up the finished strand.

> > 3 STRANDING MACHINE SPOOL

ROPE

the reels.

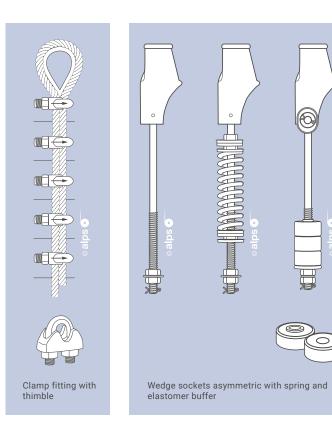
The **roping machine** is basically the **same** as The capstan **2** pulls the strands through the the stranding machine. The difference lies in preforming devices, giving them their final the smaller number and the larger capacity of helical shape. They are brought together with the core inside the die. The rope receives its final shape in the post-forming device and is wound directly onto the master reel 3 after passing the capstan 2.

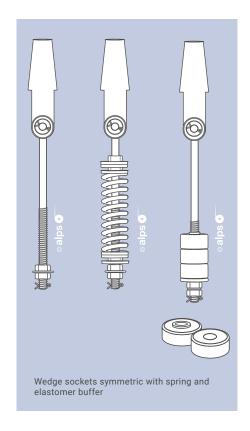
Pre-stretching

larly in high rise buildings. The constructional (permanent) elongation in elevator hoist ropes might require frequent adjustments which The following table shows elongation data are costly and inefficient. Alps pre-stretching obtained at Alps testing lab. reducing or eliminating the need for shortenings after rope installation.

Alps recommends pre-stretched ropes particu- All Alps elevator ropes come pre-stretched and tested at no additional cost.

ELONGATION TABLE

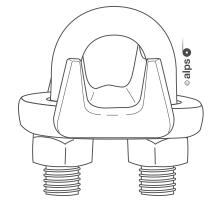

PF	RE-STRETCHED	CONSTRUCTIVE ELONGATION	ELASTIC ELONGATION	TOTAL ELONGATION
Name	Construction	AFTER 10% MBL	BETWEEN 2% AND 10% MBL	UNDER 10% MBL
Alps6 1S – EF	6x19 S - FC			
Alps6 2F – TF	6x25 Fi – FC	0.18%	0.23%	0.41%
Alps6 2F - EF	6x25 Fi – FC			
AlpsXTRA8 1S - TF	8x19 S - FC	0.07%	0.23%	0.50%
AlpsXTRA8 1S - EF	8x19 S - FC	0.27%	0.23%	0.50%
AlpsXTRA8 2F - IF	8x25 Fi – FC	0.22%	0.20%	0.42%



End fittings

There are detachable (reusable) and nonde- Wedge sockets are also known as shackles. tachable (one time use) end fittings for ropes.

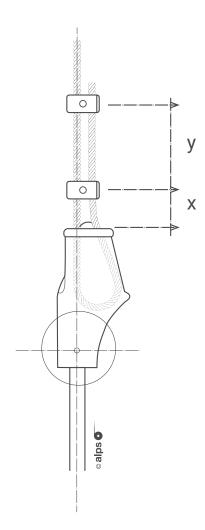
DETACHABLE FITTINGS

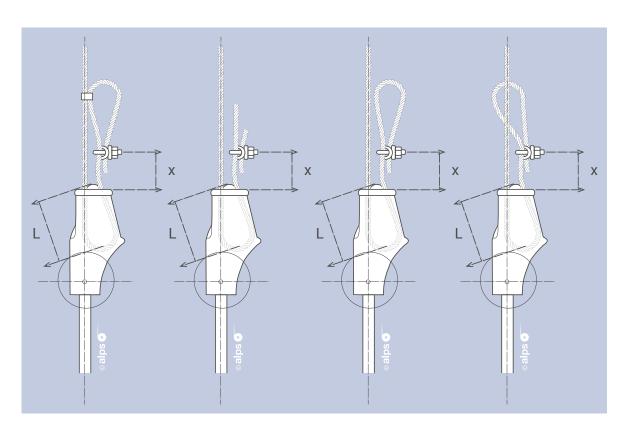


CLAMP FITTINGS

60

The **bow-part** of the **clamp** always has to be placed on the rope **dead-end**. The load on the dead-end is **max**. **50%** of the rope load. The flat part of the clamp imbeds the higher loaded parts of the rope. It is recommended to use **5 clamps** for a higher rope load. Elevator ropes have a high safety factor and therefore only a **max**. **load of approx**. **10%** of the possible rope load. Fixing clamp fittings of elevator ropes with 3 clamps is sufficient. The **distance** between clamps is about **5 to 10 times** the rope **diameter**.

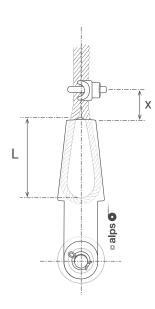

ASYMMETRIC WEDGE SOCKETS


This type is very common in the US. The rope force goes in a **centric line** from the **rope** to the **fitting** and to the **final fixation** of the rope. The fixation is centric, even if it's called asymmetric.

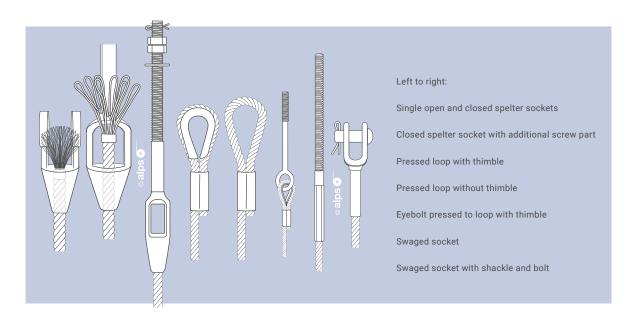
The dead end is retained with **clamps** or with clips as shown in the picture. The **wedge** is being held back from falling out by these fixations in case of a lose rope situation. The dead end of the rope must come out on the asymmetric side of the wedge socket. **Incorrect** mounted wedge sockets lead to **rope damage**.

For clips the distance \mathbf{y} is between $\mathbf{4''} - \mathbf{6''}$ (100 – 150 mm). For clips and clamps \mathbf{x} is $\mathbf{0.75}$ times the length of the wedge.

Below are some possibilities of how to retain the dead end with a clamp.



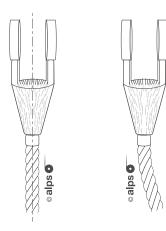
SYMMETRIC WEDGE


This type of shackle is popular in Europe and Asia. A **small eccentricity** between the rope and the fitting does not reduce safety or capacity of the asymmetric wedge socket.

The first clamp or clip should be fixed from the shackle at a distance of 0.75 L (lengths of the wedge).

Other recommendations are similar to the asymmetric wedge socket.

UNDETACHABLE FITTINGS

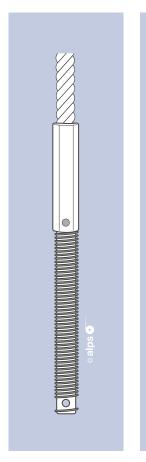


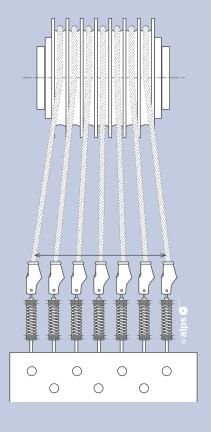
SPELTER SOCKETS

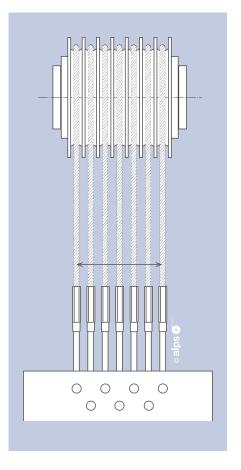
The rope end is formed into a **broom** and pulled into the socket, which then is **filled** with metal or resin **socketing material**.

Before this process the rope and socket must be in a vertical line. Otherwise, highly tense and loose strands will be near the socket, resulting in an early rope damage in this area.

The pouring process must be done slowly to avoid bubbles inside the poured metal or resin.




SWAGED SOCKETS


of the hoist rope before **delivery to the site**. the need of special tools. Expensive and demanding installation work is done in the plant. Only one end must be A control hole allows to check the rope end the rope into the elevator installation. The applied near the end of the socket.

Swaged sockets are mounted to one end ropes can be installed easy and quick, without

equipped with a **detachable** end fitting to pull position at all times. A **torsion lock hole** is

types of ropes. It is used in the aircraft industry needed. The whole rope set can run parallel, for decades. Compared with the wedge socket, matching the sheave grove distances much little space is needed for this fitting. That is better. Using swaged sockets, the life span of important when the **cabin** arrives on the **top** ropes and sheaves will be **much longer**. floor.

Using wedge sockets, the ropes will enter the **sheave** in an angle and generate strong **friction** to ropes and sheave. This will always be on the same part of the rope length and result in a **short lifetime** of these rope parts as well as the sheave.

This type of end-fitting is applicable for all With swaged sockets there is no extra space

Rope discard criteria

The discard of alps elevator ropes must always be according to ISO-4344 or other international standards.

Elevator ropes are complicated machine parts
Discard criteria can be divided into 2 groups: and are subject to a large number of outer in- · Measurable discard criteria fluences such as:

Stress / Friction / Bending / Torsion / Temperature / Corrosion / Pressure / Dust / Humidity / Vibration - etc.

Additional influences to consider are: Travel frequency / Maintenance / Lubrication / Equal tension / Installation condition - etc.

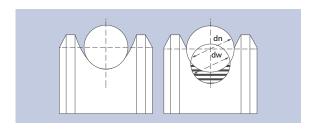
- (defined by quantities in standards)
- · Non-measurable discard criteria (to be judged by the expert).

Measurable discard criteria are:

- Outer wire breaks
- Diameter reduction

Measurable discard criteria are specified in national, international and company standards. Make sure you use valid standards, wherever ropes are installed.

OUTER WIRE BREAKS


64

ACCORDING TO ISO-4344 ANNEX E	IMMEDIATE DISCARD		DISCARD OR RE-EXAMINATION WITHIN A CERTAIN INTERVAL FIXED BY AN EXPERT			
ROPE CLASS	6X19	8X19	10X19	6X19	8X19	10X19
AVERAGE NUMBER PER LAY LENGTH	> 24	> 30	> 34	> 12	> 15	> 17
PREDOMINANT NUMBER IN ONE OR TWO STRANDS PER LAY LENGTH	> 8	> 10	> 11	> 6	> 8	> 9
ADJACENT NUMBER IN ONE STRAND	> 4	> 4	> 6	4	4	6
VALLEY BREAKS PER LAY LENGTH	> 1	> 1	> 1	1	1	1
	I			1		

Diameter reduction:

According to ISO-4344 Annex E:

diameter is reduced by **6% of the nominal rope** diameter."

e.g.:

Ø 1/2" (12.7mm) – min. Ø 0.471" (11,9 mm) Ø 1/4 "(6.35mm) – min. Ø 0.235" (5.96 mm)

In addition, ISO-4344 says:

"If unusual features are evident that might "Replacement should be considered if the indicate the possibility of advanced internal deterioration, replacement of the ropes should be considered. EXAMPLE: local reduction in diameter."

Non-measurable discard criteria are:

- Corrosion
- Mechanical damage
- Rope deformation
- Excessive wear etc.

The discard criteria must be assessed by an

Corrosion:

Red paste or red metal parts between the strands are corrosion. Potential causes include:

- Insufficient lubrication
- Humidity and/or water penetration

Action needed:

Analyze the red paste, metal parts and wires

If wires have a rough surface and show pitting:

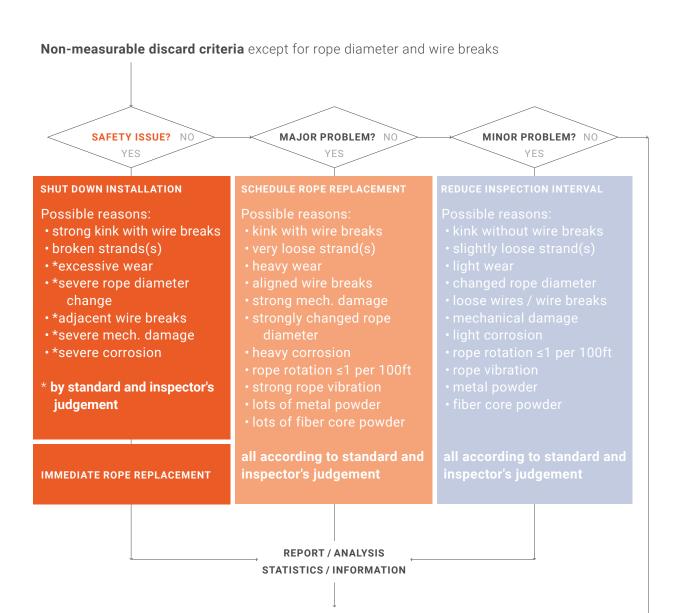
Replace the rope set

If wires have a smooth surface and no pitting:

· Clean rope from red paste/parts, relubricate and reduce inspection interval (observe!)

If the wire surface is rough, there might be serious corrosion.

Rouging:


Rouge is a fine, iron oxide formed on the rope during operation due to fretting (abrasion). It gives the rope appearance of rustiness. The presence of rouge does not mean that wire rope is beginning to rust.

Causes:

- Insufficient lubrication
- Friction between strands (rope diameter reduction)

The presence of rouge reduces the lift of the rope. However, If the wire surface is smooth there is no serious corrosion.

Product code key

If only the damaged rope is replaced, the new rope will be larger in diameter and will carry more load. It will be under higher tension. Always replace the whole rope set.

FILE

REPORT INFORMATION

alps o wire rope corporation o

CUSTOMER SERVICE

Phone: (630) 893-3888

alpswirerope.com

MIDWEST - Chicago

2530 Production Drive Saint Charles, IL 60174 Phone: (630) 893-3888

SOUTH - Houston

5714 Delany Road, Suite B Hitchcock, TX 77563 Phone: (713) 941-2068

EAST - Harrisburg

1549 Bobali Drive, Suite C Harrisburg, PA 17104 Phone: (717) 943-1935

Alps® is a joint venture of verope AG and Kiswire Ltd.

EDITION 02

All rights reserved. Copyright Alps® Wire Rope Corporation. Reprint or reproduction of any material in part or in whole only with express written consent of the publisher.

Printed on environmentally friendly FSC® paper.